Files
Submissions-App/src/submissions/frontend/visualizations/control_charts.py
2024-07-31 07:50:23 -05:00

250 lines
8.6 KiB
Python

"""
Functions for constructing controls graphs using plotly.
TODO: Move these functions to widgets.controls_charts
"""
import re
import plotly
import plotly.express as px
import pandas as pd
from pandas import DataFrame
from plotly.graph_objects import Figure
import logging
# from backend.excel import get_unique_values_in_df_column
from tools import Settings, get_unique_values_in_df_column, divide_chunks
from frontend.widgets.functions import select_save_file
logger = logging.getLogger(f"submissions.{__name__}")
class CustomFigure(Figure):
def __init__(self, ctx: Settings, df: pd.DataFrame, ytitle: str | None = None):
super().__init__()
# NOTE: Start here.
def create_charts(ctx: Settings, df: pd.DataFrame, ytitle: str | None = None) -> Figure:
"""
Constructs figures based on parsed pandas dataframe.
Args:
ctx (Settings): settings passed down from gui
df (pd.DataFrame): input dataframe
ytitle (str | None, optional): title for the y-axis. Defaults to None.
Returns:
Figure: Plotly figure
"""
# from backend.excel import drop_reruns_from_df
# converts starred genera to normal and splits off list of starred
genera = []
if df.empty:
return None
for item in df['genus'].to_list():
try:
if item[-1] == "*":
genera.append(item[-1])
else:
genera.append("")
except IndexError:
genera.append("")
df['genus'] = df['genus'].replace({'\*': ''}, regex=True).replace({"NaN": "Unknown"})
df['genera'] = genera
# NOTE: remove original runs, using reruns if applicable
df = drop_reruns_from_df(ctx=ctx, df=df)
# NOTE: sort by and exclude from
sorts = ['submitted_date', "target", "genus"]
exclude = ['name', 'genera']
modes = [item for item in df.columns if item not in sorts and item not in exclude] # and "_hashes" not in item]
# NOTE: Set descending for any columns that have "{mode}" in the header.
ascending = [False if item == "target" else True for item in sorts]
df = df.sort_values(by=sorts, ascending=ascending)
# logger.debug(df[df.isna().any(axis=1)])
# NOTE: actual chart construction is done by
fig = construct_chart(df=df, modes=modes, ytitle=ytitle)
return fig
def drop_reruns_from_df(ctx: Settings, df: DataFrame) -> DataFrame:
"""
Removes semi-duplicates from dataframe after finding sequencing repeats.
Args:
settings (dict): settings passed from gui
df (DataFrame): initial dataframe
Returns:
DataFrame: dataframe with originals removed in favour of repeats.
"""
if 'rerun_regex' in ctx:
sample_names = get_unique_values_in_df_column(df, column_name="name")
rerun_regex = re.compile(fr"{ctx.rerun_regex}")
for sample in sample_names:
if rerun_regex.search(sample):
first_run = re.sub(rerun_regex, "", sample)
df = df.drop(df[df.name == first_run].index)
return df
def generic_figure_markers(fig: Figure, modes: list = [], ytitle: str | None = None) -> Figure:
"""
Adds standard layout to figure.
Args:
fig (Figure): Input figure.
modes (list, optional): List of modes included in figure. Defaults to [].
ytitle (str, optional): Title for the y-axis. Defaults to None.
Returns:
Figure: Output figure with updated titles, rangeslider, buttons.
"""
if modes != []:
ytitle = modes[0]
# Creating visibles list for each mode.
fig.update_layout(
xaxis_title="Submitted Date (* - Date parsed from fastq file creation date)",
yaxis_title=ytitle,
showlegend=True,
barmode='stack',
updatemenus=[
dict(
type="buttons",
direction="right",
x=0.7,
y=1.2,
showactive=True,
buttons=make_buttons(modes=modes, fig_len=len(fig.data)),
)
]
)
fig.update_xaxes(
rangeslider_visible=True,
rangeselector=dict(
buttons=list([
dict(count=1, label="1m", step="month", stepmode="backward"),
dict(count=3, label="3m", step="month", stepmode="backward"),
dict(count=6, label="6m", step="month", stepmode="backward"),
dict(count=1, label="YTD", step="year", stepmode="todate"),
dict(count=1, label="1y", step="year", stepmode="backward"),
dict(step="all")
])
)
)
assert type(fig) == Figure
return fig
def make_buttons(modes: list, fig_len: int) -> list:
"""
Creates list of buttons with one for each mode to be used in showing/hiding mode traces.
Args:
modes (list): list of modes used by main parser.
fig_len (int): number of traces in the figure
Returns:
list: list of buttons.
"""
buttons = []
if len(modes) > 1:
for ii, mode in enumerate(modes):
# What I need to do is create a list of bools with the same length as the fig.data
mode_vis = [True] * fig_len
# And break it into {len(modes)} chunks
mode_vis = list(divide_chunks(mode_vis, len(modes)))
# Then, for each chunk, if the chunk index isn't equal to the index of the current mode, set to false
for jj, sublist in enumerate(mode_vis):
if jj != ii:
mode_vis[jj] = [not elem for elem in mode_vis[jj]]
# Finally, flatten list.
mode_vis = [item for sublist in mode_vis for item in sublist]
# Now, make button to add to list
buttons.append(dict(label=mode, method="update", args=[
{"visible": mode_vis},
{"yaxis.title.text": mode},
]
))
return buttons
def output_figures(figs: list, group_name: str):
"""
Writes plotly figure to html file.
Args:
settings (dict): settings passed down from click
fig (Figure): input figure object
group_name (str): controltype
"""
output = select_save_file(None, default_name=group_name, extension="html")
with open(output, "w") as f:
for fig in figs:
try:
f.write(fig.to_html(full_html=False, include_plotlyjs='cdn'))
except AttributeError:
logger.error(f"The following figure was a string: {fig}")
def construct_chart(df: pd.DataFrame, modes: list, ytitle: str | None = None) -> Figure:
"""
Creates a plotly chart for controls from a pandas dataframe
Args:
df (pd.DataFrame): input dataframe of controls
modes (list): analysis modes to construct charts for
ytitle (str | None, optional): title on the y-axis. Defaults to None.
Returns:
Figure: output stacked bar chart.
"""
fig = Figure()
for ii, mode in enumerate(modes):
if "count" in mode:
df[mode] = pd.to_numeric(df[mode], errors='coerce')
color = "genus"
color_discrete_sequence = None
elif 'percent' in mode:
color = "genus"
color_discrete_sequence = None
else:
color = "target"
match get_unique_values_in_df_column(df, 'target'):
case ['Target']:
color_discrete_sequence = ["blue"]
case ['Off-target']:
color_discrete_sequence = ['red']
case _:
color_discrete_sequence = ['blue', 'red']
bar = px.bar(df, x="submitted_date",
y=mode,
color=color,
title=mode,
barmode='stack',
hover_data=["genus", "name", "target", mode],
text="genera",
color_discrete_sequence=color_discrete_sequence
)
bar.update_traces(visible=ii == 0)
fig.add_traces(bar.data)
return generic_figure_markers(fig=fig, modes=modes, ytitle=ytitle)
def construct_html(figure: Figure) -> str:
"""
Creates final html code from plotly
Args:
figure (Figure): input figure
Returns:
str: html string
"""
html = '<html><body>'
if figure is not None:
html += plotly.offline.plot(figure, output_type='div',
include_plotlyjs='cdn') #, image = 'png', auto_open=True, image_filename='plot_image')
else:
html += "<h1>No data was retrieved for the given parameters.</h1>"
html += '</body></html>'
return html