""" Functions for constructing controls graphs using plotly. """ import plotly import plotly.express as px import pandas as pd from plotly.graph_objects import Figure import logging from tools import get_unique_values_in_df_column, divide_chunks from frontend.widgets.functions import select_save_file logger = logging.getLogger(f"submissions.{__name__}") class CustomFigure(Figure): def __init__(self, df: pd.DataFrame, modes: list, ytitle: str | None = None): super().__init__() self.construct_chart(df=df, modes=modes) self.generic_figure_markers(modes=modes, ytitle=ytitle) def construct_chart(self, df: pd.DataFrame, modes: list): """ Creates a plotly chart for controls from a pandas dataframe Args: df (pd.DataFrame): input dataframe of controls modes (list): analysis modes to construct charts for ytitle (str | None, optional): title on the y-axis. Defaults to None. Returns: Figure: output stacked bar chart. """ # fig = Figure() for ii, mode in enumerate(modes): if "count" in mode: df[mode] = pd.to_numeric(df[mode], errors='coerce') color = "genus" color_discrete_sequence = None elif 'percent' in mode: color = "genus" color_discrete_sequence = None else: color = "target" match get_unique_values_in_df_column(df, 'target'): case ['Target']: color_discrete_sequence = ["blue"] case ['Off-target']: color_discrete_sequence = ['red'] case _: color_discrete_sequence = ['blue', 'red'] bar = px.bar(df, x="submitted_date", y=mode, color=color, title=mode, barmode='stack', hover_data=["genus", "name", "target", mode], text="genera", color_discrete_sequence=color_discrete_sequence ) bar.update_traces(visible=ii == 0) self.add_traces(bar.data) # return generic_figure_markers(modes=modes, ytitle=ytitle) def generic_figure_markers(self, modes: list = [], ytitle: str | None = None): """ Adds standard layout to figure. Args: fig (Figure): Input figure. modes (list, optional): List of modes included in figure. Defaults to []. ytitle (str, optional): Title for the y-axis. Defaults to None. Returns: Figure: Output figure with updated titles, rangeslider, buttons. """ if modes: ytitle = modes[0] # Creating visibles list for each mode. self.update_layout( xaxis_title="Submitted Date (* - Date parsed from fastq file creation date)", yaxis_title=ytitle, showlegend=True, barmode='stack', updatemenus=[ dict( type="buttons", direction="right", x=0.7, y=1.2, showactive=True, buttons=[button for button in self.make_buttons(modes=modes)], ) ] ) self.update_xaxes( rangeslider_visible=True, rangeselector=dict( buttons=list([ dict(count=1, label="1m", step="month", stepmode="backward"), dict(count=3, label="3m", step="month", stepmode="backward"), dict(count=6, label="6m", step="month", stepmode="backward"), dict(count=1, label="YTD", step="year", stepmode="todate"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all") ]) ) ) assert isinstance(self, Figure) # return fig def make_buttons(self, modes: list) -> list: """ Creates list of buttons with one for each mode to be used in showing/hiding mode traces. Args: modes (list): list of modes used by main parser. fig_len (int): number of traces in the figure Returns: list: list of buttons. """ fig_len = len(self.data) if len(modes) > 1: for ii, mode in enumerate(modes): # NOTE: What I need to do is create a list of bools with the same length as the fig.data mode_vis = [True] * fig_len # NOTE: And break it into {len(modes)} chunks mode_vis = list(divide_chunks(mode_vis, len(modes))) # NOTE: Then, for each chunk, if the chunk index isn't equal to the index of the current mode, set to false for jj, sublist in enumerate(mode_vis): if jj != ii: mode_vis[jj] = [not elem for elem in mode_vis[jj]] # NOTE: Finally, flatten list. mode_vis = [item for sublist in mode_vis for item in sublist] # NOTE: Now, yield button to add to list yield dict(label=mode, method="update", args=[ {"visible": mode_vis}, {"yaxis.title.text": mode}, ]) def save_figure(self, group_name: str = "plotly_output"): """ Writes plotly figure to html file. Args: figs (): settings (dict): settings passed down from click fig (Figure): input figure object group_name (str): controltype """ output = select_save_file(None, default_name=group_name, extension="html") with open(output, "w") as f: try: f.write(self.to_html()) except AttributeError: logger.error(f"The following figure was a string: {self}") def to_html(self) -> str: """ Creates final html code from plotly Args: figure (Figure): input figure Returns: str: html string """ html = '
' if self is not None: html += plotly.offline.plot(self, output_type='div', include_plotlyjs='cdn') #, image = 'png', auto_open=True, image_filename='plot_image') else: html += "