Before control chart update.
This commit is contained in:
@@ -7,7 +7,7 @@ from pathlib import Path
|
||||
from datetime import date, timedelta
|
||||
from typing import List, Tuple, Any
|
||||
from backend.db.models import BasicSubmission
|
||||
from tools import jinja_template_loading, Settings, get_unique_values_in_df_column, html_to_pdf, get_first_blank_df_row, \
|
||||
from tools import jinja_template_loading, html_to_pdf, get_first_blank_df_row, \
|
||||
row_map
|
||||
from PyQt6.QtWidgets import QWidget
|
||||
from openpyxl.worksheet.worksheet import Worksheet
|
||||
@@ -71,20 +71,20 @@ class ReportMaker(object):
|
||||
# logger.debug(f"Name: {row[0][1]}")
|
||||
data = [item for item in row[1]]
|
||||
kit = dict(name=row[0][1], cost=data[1], run_count=int(data[0]), sample_count=int(data[2]))
|
||||
# if this is the same lab as before add together
|
||||
# NOTE: if this is the same lab as before add together
|
||||
if lab == old_lab:
|
||||
output[-1]['kits'].append(kit)
|
||||
output[-1]['total_cost'] += kit['cost']
|
||||
output[-1]['total_samples'] += kit['sample_count']
|
||||
output[-1]['total_runs'] += kit['run_count']
|
||||
# if not the same lab, make a new one
|
||||
# NOTE: if not the same lab, make a new one
|
||||
else:
|
||||
adder = dict(lab=lab, kits=[kit], total_cost=kit['cost'], total_samples=kit['sample_count'],
|
||||
total_runs=kit['run_count'])
|
||||
output.append(adder)
|
||||
old_lab = lab
|
||||
# logger.debug(output)
|
||||
dicto = {'start_date': start_date, 'end_date': end_date, 'labs': output} # , "table":table}
|
||||
dicto = {'start_date': start_date, 'end_date': end_date, 'labs': output}
|
||||
temp = env.get_template('summary_report.html')
|
||||
html = temp.render(input=dicto)
|
||||
return html
|
||||
@@ -120,11 +120,11 @@ class ReportMaker(object):
|
||||
"""
|
||||
# logger.debug(f"Updating worksheet")
|
||||
worksheet: Worksheet = self.writer.sheets['Report']
|
||||
for idx, col in enumerate(self.summary_df, start=1): # loop through all columns
|
||||
for idx, col in enumerate(self.summary_df, start=1): # NOTE: loop through all columns
|
||||
series = self.summary_df[col]
|
||||
max_len = max((
|
||||
series.astype(str).map(len).max(), # len of largest item
|
||||
len(str(series.name)) # len of column name/header
|
||||
series.astype(str).map(len).max(), # NOTE: len of largest item
|
||||
len(str(series.name)) # NOTE: len of column name/header
|
||||
)) + 20 # NOTE: adding a little extra space
|
||||
try:
|
||||
# NOTE: Convert idx to letter
|
||||
@@ -142,224 +142,3 @@ class ReportMaker(object):
|
||||
cell.style = 'Currency'
|
||||
|
||||
|
||||
def make_report_xlsx(records: list[dict]) -> Tuple[DataFrame, DataFrame]:
|
||||
"""
|
||||
create the dataframe for a report
|
||||
|
||||
Args:
|
||||
records (list[dict]): list of dictionaries created from submissions
|
||||
|
||||
Returns:
|
||||
DataFrame: output dataframe
|
||||
"""
|
||||
df = DataFrame.from_records(records)
|
||||
# NOTE: put submissions with the same lab together
|
||||
df = df.sort_values("submitting_lab")
|
||||
# NOTE: aggregate cost and sample count columns
|
||||
df2 = df.groupby(["submitting_lab", "extraction_kit"]).agg(
|
||||
{'extraction_kit': 'count', 'cost': 'sum', 'sample_count': 'sum'})
|
||||
df2 = df2.rename(columns={"extraction_kit": 'run_count'})
|
||||
# logger.debug(f"Output daftaframe for xlsx: {df2.columns}")
|
||||
df = df.drop('id', axis=1)
|
||||
df = df.sort_values(['submitting_lab', "submitted_date"])
|
||||
return df, df2
|
||||
|
||||
|
||||
def make_report_html(df: DataFrame, start_date: date, end_date: date) -> str:
|
||||
"""
|
||||
generates html from the report dataframe
|
||||
|
||||
Args:
|
||||
df (DataFrame): input dataframe generated from 'make_report_xlsx' above
|
||||
start_date (date): starting date of the report period
|
||||
end_date (date): ending date of the report period
|
||||
|
||||
Returns:
|
||||
str: html string
|
||||
"""
|
||||
old_lab = ""
|
||||
output = []
|
||||
# logger.debug(f"Report DataFrame: {df}")
|
||||
for ii, row in enumerate(df.iterrows()):
|
||||
# logger.debug(f"Row {ii}: {row}")
|
||||
lab = row[0][0]
|
||||
# logger.debug(type(row))
|
||||
# logger.debug(f"Old lab: {old_lab}, Current lab: {lab}")
|
||||
# logger.debug(f"Name: {row[0][1]}")
|
||||
data = [item for item in row[1]]
|
||||
kit = dict(name=row[0][1], cost=data[1], run_count=int(data[0]), sample_count=int(data[2]))
|
||||
# if this is the same lab as before add together
|
||||
if lab == old_lab:
|
||||
output[-1]['kits'].append(kit)
|
||||
output[-1]['total_cost'] += kit['cost']
|
||||
output[-1]['total_samples'] += kit['sample_count']
|
||||
output[-1]['total_runs'] += kit['run_count']
|
||||
# if not the same lab, make a new one
|
||||
else:
|
||||
adder = dict(lab=lab, kits=[kit], total_cost=kit['cost'], total_samples=kit['sample_count'],
|
||||
total_runs=kit['run_count'])
|
||||
output.append(adder)
|
||||
old_lab = lab
|
||||
# logger.debug(output)
|
||||
dicto = {'start_date': start_date, 'end_date': end_date, 'labs': output} #, "table":table}
|
||||
temp = env.get_template('summary_report.html')
|
||||
html = temp.render(input=dicto)
|
||||
return html
|
||||
|
||||
|
||||
# TODO: move this into a classmethod of Controls?
|
||||
def convert_data_list_to_df(input: list[dict], subtype: str | None = None) -> DataFrame:
|
||||
"""
|
||||
Convert list of control records to dataframe
|
||||
|
||||
Args:
|
||||
ctx (dict): settings passed from gui
|
||||
input (list[dict]): list of dictionaries containing records
|
||||
subtype (str | None, optional): name of submission type. Defaults to None.
|
||||
|
||||
Returns:
|
||||
DataFrame: dataframe of controls
|
||||
"""
|
||||
|
||||
df = DataFrame.from_records(input)
|
||||
safe = ['name', 'submitted_date', 'genus', 'target']
|
||||
for column in df.columns:
|
||||
if "percent" in column:
|
||||
count_col = [item for item in df.columns if "count" in item][0]
|
||||
# NOTE: The actual percentage from kraken was off due to exclusion of NaN, recalculating.
|
||||
df[column] = 100 * df[count_col] / df.groupby('name')[count_col].transform('sum')
|
||||
if column not in safe:
|
||||
if subtype is not None and column != subtype:
|
||||
del df[column]
|
||||
# NOTE: move date of sample submitted on same date as previous ahead one.
|
||||
df = displace_date(df)
|
||||
# NOTE: ad hoc method to make data labels more accurate.
|
||||
df = df_column_renamer(df=df)
|
||||
return df
|
||||
|
||||
|
||||
def df_column_renamer(df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Ad hoc function I created to clarify some fields
|
||||
|
||||
Args:
|
||||
df (DataFrame): input dataframe
|
||||
|
||||
Returns:
|
||||
DataFrame: dataframe with 'clarified' column names
|
||||
"""
|
||||
df = df[df.columns.drop(list(df.filter(regex='_hashes')))]
|
||||
return df.rename(columns={
|
||||
"contains_ratio": "contains_shared_hashes_ratio",
|
||||
"matches_ratio": "matches_shared_hashes_ratio",
|
||||
"kraken_count": "kraken2_read_count_(top_50)",
|
||||
"kraken_percent": "kraken2_read_percent_(top_50)"
|
||||
})
|
||||
|
||||
|
||||
def displace_date(df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
This function serves to split samples that were submitted on the same date by incrementing dates.
|
||||
It will shift the date forward by one day if it is the same day as an existing date in a list.
|
||||
|
||||
Args:
|
||||
df (DataFrame): input dataframe composed of control records
|
||||
|
||||
Returns:
|
||||
DataFrame: output dataframe with dates incremented.
|
||||
"""
|
||||
# logger.debug(f"Unique items: {df['name'].unique()}")
|
||||
# NOTE: get submitted dates for each control
|
||||
dict_list = [dict(name=item, date=df[df.name == item].iloc[0]['submitted_date']) for item in
|
||||
sorted(df['name'].unique())]
|
||||
previous_dates = []
|
||||
for _, item in enumerate(dict_list):
|
||||
df, previous_dates = check_date(df=df, item=item, previous_dates=previous_dates)
|
||||
return df
|
||||
|
||||
|
||||
def check_date(df: DataFrame, item: dict, previous_dates: list) -> Tuple[DataFrame, list]:
|
||||
"""
|
||||
Checks if an items date is already present in df and adjusts df accordingly
|
||||
|
||||
Args:
|
||||
df (DataFrame): input dataframe
|
||||
item (dict): control for checking
|
||||
previous_dates (list): list of dates found in previous controls
|
||||
|
||||
Returns:
|
||||
Tuple[DataFrame, list]: Output dataframe and appended list of previous dates
|
||||
"""
|
||||
try:
|
||||
check = item['date'] in previous_dates
|
||||
except IndexError:
|
||||
check = False
|
||||
previous_dates.append(item['date'])
|
||||
if check:
|
||||
# logger.debug(f"We found one! Increment date!\n\t{item['date']} to {item['date'] + timedelta(days=1)}")
|
||||
# NOTE: get df locations where name == item name
|
||||
mask = df['name'] == item['name']
|
||||
# NOTE: increment date in dataframe
|
||||
df.loc[mask, 'submitted_date'] = df.loc[mask, 'submitted_date'].apply(lambda x: x + timedelta(days=1))
|
||||
item['date'] += timedelta(days=1)
|
||||
passed = False
|
||||
else:
|
||||
passed = True
|
||||
# logger.debug(f"\n\tCurrent date: {item['date']}\n\tPrevious dates:{previous_dates}")
|
||||
# logger.debug(f"DF: {type(df)}, previous_dates: {type(previous_dates)}")
|
||||
# if run didn't lead to changed date, return values
|
||||
if passed:
|
||||
# logger.debug(f"Date check passed, returning.")
|
||||
return df, previous_dates
|
||||
# NOTE: if date was changed, rerun with new date
|
||||
else:
|
||||
logger.warning(f"Date check failed, running recursion")
|
||||
df, previous_dates = check_date(df, item, previous_dates)
|
||||
return df, previous_dates
|
||||
|
||||
|
||||
# def get_unique_values_in_df_column(df: DataFrame, column_name: str) -> list:
|
||||
# """
|
||||
# get all unique values in a dataframe column by name
|
||||
#
|
||||
# Args:
|
||||
# df (DataFrame): input dataframe
|
||||
# column_name (str): name of column of interest
|
||||
#
|
||||
# Returns:
|
||||
# list: sorted list of unique values
|
||||
# """
|
||||
# return sorted(df[column_name].unique())
|
||||
|
||||
|
||||
def drop_reruns_from_df(ctx: Settings, df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Removes semi-duplicates from dataframe after finding sequencing repeats.
|
||||
|
||||
Args:
|
||||
settings (dict): settings passed from gui
|
||||
df (DataFrame): initial dataframe
|
||||
|
||||
Returns:
|
||||
DataFrame: dataframe with originals removed in favour of repeats.
|
||||
"""
|
||||
if 'rerun_regex' in ctx:
|
||||
sample_names = get_unique_values_in_df_column(df, column_name="name")
|
||||
rerun_regex = re.compile(fr"{ctx.rerun_regex}")
|
||||
for sample in sample_names:
|
||||
if rerun_regex.search(sample):
|
||||
first_run = re.sub(rerun_regex, "", sample)
|
||||
df = df.drop(df[df.name == first_run].index)
|
||||
return df
|
||||
|
||||
# def make_hitpicks(input:List[dict]) -> DataFrame:
|
||||
# """
|
||||
# Converts list of dictionaries constructed by hitpicking to dataframe
|
||||
#
|
||||
# Args:
|
||||
# input (List[dict]): list of hitpicked dictionaries
|
||||
#
|
||||
# Returns:
|
||||
# DataFrame: constructed dataframe.
|
||||
# """
|
||||
# return DataFrame.from_records(input)
|
||||
|
||||
Reference in New Issue
Block a user