Pre-sample/control connect
This commit is contained in:
@@ -4,25 +4,26 @@ Functions for constructing controls graphs using plotly.
|
||||
import plotly
|
||||
import plotly.express as px
|
||||
import pandas as pd
|
||||
from pathlib import Path
|
||||
from plotly.graph_objects import Figure
|
||||
import logging
|
||||
from backend.excel import get_unique_values_in_df_column
|
||||
from tools import Settings
|
||||
from frontend.widgets.functions import select_save_file
|
||||
|
||||
logger = logging.getLogger(f"submissions.{__name__}")
|
||||
|
||||
|
||||
def create_charts(ctx:dict, df:pd.DataFrame, ytitle:str|None=None) -> Figure:
|
||||
def create_charts(ctx:Settings, df:pd.DataFrame, ytitle:str|None=None) -> Figure:
|
||||
"""
|
||||
Constructs figures based on parsed pandas dataframe.
|
||||
|
||||
Args:
|
||||
settings (dict): settings passed down from gui
|
||||
ctx (Settings): settings passed down from gui
|
||||
df (pd.DataFrame): input dataframe
|
||||
group_name (str): controltype
|
||||
ytitle (str | None, optional): title for the y-axis. Defaults to None.
|
||||
|
||||
Returns:
|
||||
Figure: plotly figure
|
||||
Figure: Plotly figure
|
||||
"""
|
||||
from backend.excel import drop_reruns_from_df
|
||||
# converts starred genera to normal and splits off list of starred
|
||||
@@ -54,8 +55,6 @@ def create_charts(ctx:dict, df:pd.DataFrame, ytitle:str|None=None) -> Figure:
|
||||
fig = construct_chart(df=df, modes=modes, ytitle=ytitle)
|
||||
return fig
|
||||
|
||||
|
||||
|
||||
def generic_figure_markers(fig:Figure, modes:list=[], ytitle:str|None=None) -> Figure:
|
||||
"""
|
||||
Adds standard layout to figure.
|
||||
@@ -63,6 +62,7 @@ def generic_figure_markers(fig:Figure, modes:list=[], ytitle:str|None=None) -> F
|
||||
Args:
|
||||
fig (Figure): Input figure.
|
||||
modes (list, optional): List of modes included in figure. Defaults to [].
|
||||
ytitle (str, optional): Title for the y-axis. Defaults to None.
|
||||
|
||||
Returns:
|
||||
Figure: Output figure with updated titles, rangeslider, buttons.
|
||||
@@ -102,7 +102,6 @@ def generic_figure_markers(fig:Figure, modes:list=[], ytitle:str|None=None) -> F
|
||||
assert type(fig) == Figure
|
||||
return fig
|
||||
|
||||
|
||||
def make_buttons(modes:list, fig_len:int) -> list:
|
||||
"""
|
||||
Creates list of buttons with one for each mode to be used in showing/hiding mode traces.
|
||||
@@ -135,7 +134,7 @@ def make_buttons(modes:list, fig_len:int) -> list:
|
||||
))
|
||||
return buttons
|
||||
|
||||
def output_figures(settings:dict, figs:list, group_name:str):
|
||||
def output_figures(figs:list, group_name:str):
|
||||
"""
|
||||
Writes plotly figure to html file.
|
||||
|
||||
@@ -144,21 +143,19 @@ def output_figures(settings:dict, figs:list, group_name:str):
|
||||
fig (Figure): input figure object
|
||||
group_name (str): controltype
|
||||
"""
|
||||
with open(Path(settings['folder']['output']).joinpath(f'{group_name}.html'), "w") as f:
|
||||
output = select_save_file(None, default_name=group_name, extension="html")
|
||||
with open(output, "w") as f:
|
||||
for fig in figs:
|
||||
try:
|
||||
f.write(fig.to_html(full_html=False, include_plotlyjs='cdn'))
|
||||
except AttributeError:
|
||||
logger.error(f"The following figure was a string: {fig}")
|
||||
|
||||
|
||||
|
||||
def construct_chart(df:pd.DataFrame, modes:list, ytitle:str|None=None) -> Figure:
|
||||
"""
|
||||
Creates a plotly chart for controls from a pandas dataframe
|
||||
|
||||
Args:
|
||||
ctx (dict): settings passed down from gui
|
||||
df (pd.DataFrame): input dataframe of controls
|
||||
modes (list): analysis modes to construct charts for
|
||||
ytitle (str | None, optional): title on the y-axis. Defaults to None.
|
||||
@@ -200,72 +197,69 @@ def construct_chart(df:pd.DataFrame, modes:list, ytitle:str|None=None) -> Figure
|
||||
# Below are the individual construction functions. They must be named "construct_{mode}_chart" and
|
||||
# take only json_in and mode to hook into the main processor.
|
||||
|
||||
def construct_refseq_chart(settings:dict, df:pd.DataFrame, group_name:str, mode:str) -> Figure:
|
||||
"""
|
||||
Constructs intial refseq chart for both contains and matches (depreciated).
|
||||
# def construct_refseq_chart(df:pd.DataFrame, group_name:str, mode:str) -> Figure:
|
||||
# """
|
||||
# Constructs intial refseq chart for both contains and matches (depreciated).
|
||||
|
||||
Args:
|
||||
settings (dict): settings passed down from gui.
|
||||
df (pd.DataFrame): dataframe containing all sample data for the group.
|
||||
group_name (str): name of the group being processed.
|
||||
mode (str): contains or matches, overwritten by hardcoding, so don't think about it too hard.
|
||||
# Args:
|
||||
# df (pd.DataFrame): dataframe containing all sample data for the group.
|
||||
# group_name (str): name of the group being processed.
|
||||
# mode (str): contains or matches, overwritten by hardcoding, so don't think about it too hard.
|
||||
|
||||
Returns:
|
||||
Figure: initial figure with contains and matches traces.
|
||||
"""
|
||||
# This overwrites the mode from the signature, might get confusing.
|
||||
fig = Figure()
|
||||
modes = ['contains', 'matches']
|
||||
for ii, mode in enumerate(modes):
|
||||
bar = px.bar(df, x="submitted_date",
|
||||
y=f"{mode}_ratio",
|
||||
color="target",
|
||||
title=f"{group_name}_{mode}",
|
||||
barmode='stack',
|
||||
hover_data=["genus", "name", f"{mode}_hashes"],
|
||||
text="genera"
|
||||
)
|
||||
bar.update_traces(visible = ii == 0)
|
||||
# Plotly express returns a full figure, so we have to use the data from that figure only.
|
||||
fig.add_traces(bar.data)
|
||||
# sys.exit(f"number of traces={len(fig.data)}")
|
||||
return generic_figure_markers(fig=fig, modes=modes)
|
||||
# Returns:
|
||||
# Figure: initial figure with contains and matches traces.
|
||||
# """
|
||||
# # This overwrites the mode from the signature, might get confusing.
|
||||
# fig = Figure()
|
||||
# modes = ['contains', 'matches']
|
||||
# for ii, mode in enumerate(modes):
|
||||
# bar = px.bar(df, x="submitted_date",
|
||||
# y=f"{mode}_ratio",
|
||||
# color="target",
|
||||
# title=f"{group_name}_{mode}",
|
||||
# barmode='stack',
|
||||
# hover_data=["genus", "name", f"{mode}_hashes"],
|
||||
# text="genera"
|
||||
# )
|
||||
# bar.update_traces(visible = ii == 0)
|
||||
# # Plotly express returns a full figure, so we have to use the data from that figure only.
|
||||
# fig.add_traces(bar.data)
|
||||
# # sys.exit(f"number of traces={len(fig.data)}")
|
||||
# return generic_figure_markers(fig=fig, modes=modes)
|
||||
|
||||
# def construct_kraken_chart(settings:dict, df:pd.DataFrame, group_name:str, mode:str) -> Figure:
|
||||
# """
|
||||
# Constructs intial refseq chart for each mode in the kraken config settings. (depreciated)
|
||||
|
||||
def construct_kraken_chart(settings:dict, df:pd.DataFrame, group_name:str, mode:str) -> Figure:
|
||||
"""
|
||||
Constructs intial refseq chart for each mode in the kraken config settings. (depreciated)
|
||||
# Args:
|
||||
# settings (dict): settings passed down from click.
|
||||
# df (pd.DataFrame): dataframe containing all sample data for the group.
|
||||
# group_name (str): name of the group being processed.
|
||||
# mode (str): kraken modes retrieved from config file by setup.
|
||||
|
||||
Args:
|
||||
settings (dict): settings passed down from click.
|
||||
df (pd.DataFrame): dataframe containing all sample data for the group.
|
||||
group_name (str): name of the group being processed.
|
||||
mode (str): kraken modes retrieved from config file by setup.
|
||||
|
||||
Returns:
|
||||
Figure: initial figure with traces for modes
|
||||
"""
|
||||
df[f'{mode}_count'] = pd.to_numeric(df[f'{mode}_count'],errors='coerce')
|
||||
df = df.groupby('submitted_date')[f'{mode}_count'].nlargest(2)
|
||||
# Returns:
|
||||
# Figure: initial figure with traces for modes
|
||||
# """
|
||||
# df[f'{mode}_count'] = pd.to_numeric(df[f'{mode}_count'],errors='coerce')
|
||||
# df = df.groupby('submitted_date')[f'{mode}_count'].nlargest(2)
|
||||
|
||||
# The actual percentage from kraken was off due to exclusion of NaN, recalculating.
|
||||
df[f'{mode}_percent'] = 100 * df[f'{mode}_count'] / df.groupby('submitted_date')[f'{mode}_count'].transform('sum')
|
||||
modes = settings['modes'][mode]
|
||||
# This overwrites the mode from the signature, might get confusing.
|
||||
fig = Figure()
|
||||
for ii, entry in enumerate(modes):
|
||||
bar = px.bar(df, x="submitted_date",
|
||||
y=entry,
|
||||
color="genus",
|
||||
title=f"{group_name}_{entry}",
|
||||
barmode="stack",
|
||||
hover_data=["genus", "name", "target"],
|
||||
text="genera",
|
||||
)
|
||||
bar.update_traces(visible = ii == 0)
|
||||
fig.add_traces(bar.data)
|
||||
return generic_figure_markers(fig=fig, modes=modes)
|
||||
|
||||
# # The actual percentage from kraken was off due to exclusion of NaN, recalculating.
|
||||
# df[f'{mode}_percent'] = 100 * df[f'{mode}_count'] / df.groupby('submitted_date')[f'{mode}_count'].transform('sum')
|
||||
# modes = settings['modes'][mode]
|
||||
# # This overwrites the mode from the signature, might get confusing.
|
||||
# fig = Figure()
|
||||
# for ii, entry in enumerate(modes):
|
||||
# bar = px.bar(df, x="submitted_date",
|
||||
# y=entry,
|
||||
# color="genus",
|
||||
# title=f"{group_name}_{entry}",
|
||||
# barmode="stack",
|
||||
# hover_data=["genus", "name", "target"],
|
||||
# text="genera",
|
||||
# )
|
||||
# bar.update_traces(visible = ii == 0)
|
||||
# fig.add_traces(bar.data)
|
||||
# return generic_figure_markers(fig=fig, modes=modes)
|
||||
|
||||
def divide_chunks(input_list:list, chunk_count:int):
|
||||
"""
|
||||
@@ -281,7 +275,6 @@ def divide_chunks(input_list:list, chunk_count:int):
|
||||
k, m = divmod(len(input_list), chunk_count)
|
||||
return (input_list[i*k+min(i, m):(i+1)*k+min(i+1, m)] for i in range(chunk_count))
|
||||
|
||||
|
||||
def construct_html(figure:Figure) -> str:
|
||||
"""
|
||||
Creates final html code from plotly
|
||||
|
||||
Reference in New Issue
Block a user