Conversion of some functions to generators.
This commit is contained in:
@@ -1,16 +1,12 @@
|
||||
"""
|
||||
Functions for constructing controls graphs using plotly.
|
||||
TODO: Move these functions to widgets.controls_charts
|
||||
"""
|
||||
import re
|
||||
import plotly
|
||||
import plotly.express as px
|
||||
import pandas as pd
|
||||
from pandas import DataFrame
|
||||
from plotly.graph_objects import Figure
|
||||
import logging
|
||||
# from backend.excel import get_unique_values_in_df_column
|
||||
from tools import Settings, get_unique_values_in_df_column, divide_chunks
|
||||
from tools import get_unique_values_in_df_column, divide_chunks
|
||||
from frontend.widgets.functions import select_save_file
|
||||
|
||||
logger = logging.getLogger(f"submissions.{__name__}")
|
||||
@@ -18,232 +14,164 @@ logger = logging.getLogger(f"submissions.{__name__}")
|
||||
|
||||
class CustomFigure(Figure):
|
||||
|
||||
def __init__(self, ctx: Settings, df: pd.DataFrame, ytitle: str | None = None):
|
||||
def __init__(self, df: pd.DataFrame, modes: list, ytitle: str | None = None):
|
||||
super().__init__()
|
||||
self.construct_chart(df=df, modes=modes)
|
||||
self.generic_figure_markers(modes=modes, ytitle=ytitle)
|
||||
|
||||
def construct_chart(self, df: pd.DataFrame, modes: list):
|
||||
"""
|
||||
Creates a plotly chart for controls from a pandas dataframe
|
||||
|
||||
# NOTE: Start here.
|
||||
def create_charts(ctx: Settings, df: pd.DataFrame, ytitle: str | None = None) -> Figure:
|
||||
"""
|
||||
Constructs figures based on parsed pandas dataframe.
|
||||
Args:
|
||||
df (pd.DataFrame): input dataframe of controls
|
||||
modes (list): analysis modes to construct charts for
|
||||
ytitle (str | None, optional): title on the y-axis. Defaults to None.
|
||||
|
||||
Args:
|
||||
ctx (Settings): settings passed down from gui
|
||||
df (pd.DataFrame): input dataframe
|
||||
ytitle (str | None, optional): title for the y-axis. Defaults to None.
|
||||
|
||||
Returns:
|
||||
Figure: Plotly figure
|
||||
"""
|
||||
# from backend.excel import drop_reruns_from_df
|
||||
# converts starred genera to normal and splits off list of starred
|
||||
genera = []
|
||||
if df.empty:
|
||||
return None
|
||||
for item in df['genus'].to_list():
|
||||
try:
|
||||
if item[-1] == "*":
|
||||
genera.append(item[-1])
|
||||
else:
|
||||
genera.append("")
|
||||
except IndexError:
|
||||
genera.append("")
|
||||
df['genus'] = df['genus'].replace({'\*': ''}, regex=True).replace({"NaN": "Unknown"})
|
||||
df['genera'] = genera
|
||||
# NOTE: remove original runs, using reruns if applicable
|
||||
df = drop_reruns_from_df(ctx=ctx, df=df)
|
||||
# NOTE: sort by and exclude from
|
||||
sorts = ['submitted_date', "target", "genus"]
|
||||
exclude = ['name', 'genera']
|
||||
modes = [item for item in df.columns if item not in sorts and item not in exclude] # and "_hashes" not in item]
|
||||
# NOTE: Set descending for any columns that have "{mode}" in the header.
|
||||
ascending = [False if item == "target" else True for item in sorts]
|
||||
df = df.sort_values(by=sorts, ascending=ascending)
|
||||
# logger.debug(df[df.isna().any(axis=1)])
|
||||
# NOTE: actual chart construction is done by
|
||||
fig = construct_chart(df=df, modes=modes, ytitle=ytitle)
|
||||
return fig
|
||||
|
||||
|
||||
def drop_reruns_from_df(ctx: Settings, df: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Removes semi-duplicates from dataframe after finding sequencing repeats.
|
||||
|
||||
Args:
|
||||
settings (dict): settings passed from gui
|
||||
df (DataFrame): initial dataframe
|
||||
|
||||
Returns:
|
||||
DataFrame: dataframe with originals removed in favour of repeats.
|
||||
"""
|
||||
if 'rerun_regex' in ctx:
|
||||
sample_names = get_unique_values_in_df_column(df, column_name="name")
|
||||
rerun_regex = re.compile(fr"{ctx.rerun_regex}")
|
||||
for sample in sample_names:
|
||||
if rerun_regex.search(sample):
|
||||
first_run = re.sub(rerun_regex, "", sample)
|
||||
df = df.drop(df[df.name == first_run].index)
|
||||
return df
|
||||
|
||||
|
||||
def generic_figure_markers(fig: Figure, modes: list = [], ytitle: str | None = None) -> Figure:
|
||||
"""
|
||||
Adds standard layout to figure.
|
||||
|
||||
Args:
|
||||
fig (Figure): Input figure.
|
||||
modes (list, optional): List of modes included in figure. Defaults to [].
|
||||
ytitle (str, optional): Title for the y-axis. Defaults to None.
|
||||
|
||||
Returns:
|
||||
Figure: Output figure with updated titles, rangeslider, buttons.
|
||||
"""
|
||||
if modes != []:
|
||||
ytitle = modes[0]
|
||||
# Creating visibles list for each mode.
|
||||
fig.update_layout(
|
||||
xaxis_title="Submitted Date (* - Date parsed from fastq file creation date)",
|
||||
yaxis_title=ytitle,
|
||||
showlegend=True,
|
||||
barmode='stack',
|
||||
updatemenus=[
|
||||
dict(
|
||||
type="buttons",
|
||||
direction="right",
|
||||
x=0.7,
|
||||
y=1.2,
|
||||
showactive=True,
|
||||
buttons=make_buttons(modes=modes, fig_len=len(fig.data)),
|
||||
)
|
||||
]
|
||||
)
|
||||
fig.update_xaxes(
|
||||
rangeslider_visible=True,
|
||||
rangeselector=dict(
|
||||
buttons=list([
|
||||
dict(count=1, label="1m", step="month", stepmode="backward"),
|
||||
dict(count=3, label="3m", step="month", stepmode="backward"),
|
||||
dict(count=6, label="6m", step="month", stepmode="backward"),
|
||||
dict(count=1, label="YTD", step="year", stepmode="todate"),
|
||||
dict(count=1, label="1y", step="year", stepmode="backward"),
|
||||
dict(step="all")
|
||||
])
|
||||
)
|
||||
)
|
||||
assert type(fig) == Figure
|
||||
return fig
|
||||
|
||||
|
||||
def make_buttons(modes: list, fig_len: int) -> list:
|
||||
"""
|
||||
Creates list of buttons with one for each mode to be used in showing/hiding mode traces.
|
||||
|
||||
Args:
|
||||
modes (list): list of modes used by main parser.
|
||||
fig_len (int): number of traces in the figure
|
||||
|
||||
Returns:
|
||||
list: list of buttons.
|
||||
"""
|
||||
buttons = []
|
||||
if len(modes) > 1:
|
||||
Returns:
|
||||
Figure: output stacked bar chart.
|
||||
"""
|
||||
# fig = Figure()
|
||||
for ii, mode in enumerate(modes):
|
||||
# What I need to do is create a list of bools with the same length as the fig.data
|
||||
mode_vis = [True] * fig_len
|
||||
# And break it into {len(modes)} chunks
|
||||
mode_vis = list(divide_chunks(mode_vis, len(modes)))
|
||||
# Then, for each chunk, if the chunk index isn't equal to the index of the current mode, set to false
|
||||
for jj, sublist in enumerate(mode_vis):
|
||||
if jj != ii:
|
||||
mode_vis[jj] = [not elem for elem in mode_vis[jj]]
|
||||
# Finally, flatten list.
|
||||
mode_vis = [item for sublist in mode_vis for item in sublist]
|
||||
# Now, make button to add to list
|
||||
buttons.append(dict(label=mode, method="update", args=[
|
||||
{"visible": mode_vis},
|
||||
{"yaxis.title.text": mode},
|
||||
if "count" in mode:
|
||||
df[mode] = pd.to_numeric(df[mode], errors='coerce')
|
||||
color = "genus"
|
||||
color_discrete_sequence = None
|
||||
elif 'percent' in mode:
|
||||
color = "genus"
|
||||
color_discrete_sequence = None
|
||||
else:
|
||||
color = "target"
|
||||
match get_unique_values_in_df_column(df, 'target'):
|
||||
case ['Target']:
|
||||
color_discrete_sequence = ["blue"]
|
||||
case ['Off-target']:
|
||||
color_discrete_sequence = ['red']
|
||||
case _:
|
||||
color_discrete_sequence = ['blue', 'red']
|
||||
bar = px.bar(df,
|
||||
x="submitted_date",
|
||||
y=mode,
|
||||
color=color,
|
||||
title=mode,
|
||||
barmode='stack',
|
||||
hover_data=["genus", "name", "target", mode],
|
||||
text="genera",
|
||||
color_discrete_sequence=color_discrete_sequence
|
||||
)
|
||||
bar.update_traces(visible=ii == 0)
|
||||
self.add_traces(bar.data)
|
||||
# return generic_figure_markers(modes=modes, ytitle=ytitle)
|
||||
|
||||
def generic_figure_markers(self, modes: list = [], ytitle: str | None = None):
|
||||
"""
|
||||
Adds standard layout to figure.
|
||||
|
||||
Args:
|
||||
fig (Figure): Input figure.
|
||||
modes (list, optional): List of modes included in figure. Defaults to [].
|
||||
ytitle (str, optional): Title for the y-axis. Defaults to None.
|
||||
|
||||
Returns:
|
||||
Figure: Output figure with updated titles, rangeslider, buttons.
|
||||
"""
|
||||
if modes:
|
||||
ytitle = modes[0]
|
||||
# Creating visibles list for each mode.
|
||||
self.update_layout(
|
||||
xaxis_title="Submitted Date (* - Date parsed from fastq file creation date)",
|
||||
yaxis_title=ytitle,
|
||||
showlegend=True,
|
||||
barmode='stack',
|
||||
updatemenus=[
|
||||
dict(
|
||||
type="buttons",
|
||||
direction="right",
|
||||
x=0.7,
|
||||
y=1.2,
|
||||
showactive=True,
|
||||
buttons=[button for button in self.make_buttons(modes=modes)],
|
||||
)
|
||||
]
|
||||
))
|
||||
return buttons
|
||||
)
|
||||
self.update_xaxes(
|
||||
rangeslider_visible=True,
|
||||
rangeselector=dict(
|
||||
buttons=list([
|
||||
dict(count=1, label="1m", step="month", stepmode="backward"),
|
||||
dict(count=3, label="3m", step="month", stepmode="backward"),
|
||||
dict(count=6, label="6m", step="month", stepmode="backward"),
|
||||
dict(count=1, label="YTD", step="year", stepmode="todate"),
|
||||
dict(count=1, label="1y", step="year", stepmode="backward"),
|
||||
dict(step="all")
|
||||
])
|
||||
)
|
||||
)
|
||||
assert isinstance(self, Figure)
|
||||
# return fig
|
||||
|
||||
def make_buttons(self, modes: list) -> list:
|
||||
"""
|
||||
Creates list of buttons with one for each mode to be used in showing/hiding mode traces.
|
||||
|
||||
def output_figures(figs: list, group_name: str):
|
||||
"""
|
||||
Writes plotly figure to html file.
|
||||
Args:
|
||||
modes (list): list of modes used by main parser.
|
||||
fig_len (int): number of traces in the figure
|
||||
|
||||
Args:
|
||||
settings (dict): settings passed down from click
|
||||
fig (Figure): input figure object
|
||||
group_name (str): controltype
|
||||
"""
|
||||
output = select_save_file(None, default_name=group_name, extension="html")
|
||||
with open(output, "w") as f:
|
||||
for fig in figs:
|
||||
Returns:
|
||||
list: list of buttons.
|
||||
"""
|
||||
fig_len = len(self.data)
|
||||
if len(modes) > 1:
|
||||
for ii, mode in enumerate(modes):
|
||||
# What I need to do is create a list of bools with the same length as the fig.data
|
||||
mode_vis = [True] * fig_len
|
||||
# And break it into {len(modes)} chunks
|
||||
mode_vis = list(divide_chunks(mode_vis, len(modes)))
|
||||
# Then, for each chunk, if the chunk index isn't equal to the index of the current mode, set to false
|
||||
for jj, sublist in enumerate(mode_vis):
|
||||
if jj != ii:
|
||||
mode_vis[jj] = [not elem for elem in mode_vis[jj]]
|
||||
# Finally, flatten list.
|
||||
mode_vis = [item for sublist in mode_vis for item in sublist]
|
||||
# Now, yield button to add to list
|
||||
yield dict(label=mode, method="update", args=[
|
||||
{"visible": mode_vis},
|
||||
{"yaxis.title.text": mode},
|
||||
])
|
||||
|
||||
def save_figure(self, group_name: str = "plotly_output"):
|
||||
"""
|
||||
Writes plotly figure to html file.
|
||||
|
||||
Args:
|
||||
figs ():
|
||||
settings (dict): settings passed down from click
|
||||
fig (Figure): input figure object
|
||||
group_name (str): controltype
|
||||
"""
|
||||
output = select_save_file(None, default_name=group_name, extension="html")
|
||||
with open(output, "w") as f:
|
||||
try:
|
||||
f.write(fig.to_html(full_html=False, include_plotlyjs='cdn'))
|
||||
f.write(self.to_html())
|
||||
except AttributeError:
|
||||
logger.error(f"The following figure was a string: {fig}")
|
||||
logger.error(f"The following figure was a string: {self}")
|
||||
|
||||
def to_html(self) -> str:
|
||||
"""
|
||||
Creates final html code from plotly
|
||||
|
||||
def construct_chart(df: pd.DataFrame, modes: list, ytitle: str | None = None) -> Figure:
|
||||
"""
|
||||
Creates a plotly chart for controls from a pandas dataframe
|
||||
Args:
|
||||
figure (Figure): input figure
|
||||
|
||||
Args:
|
||||
df (pd.DataFrame): input dataframe of controls
|
||||
modes (list): analysis modes to construct charts for
|
||||
ytitle (str | None, optional): title on the y-axis. Defaults to None.
|
||||
|
||||
Returns:
|
||||
Figure: output stacked bar chart.
|
||||
"""
|
||||
fig = Figure()
|
||||
for ii, mode in enumerate(modes):
|
||||
if "count" in mode:
|
||||
df[mode] = pd.to_numeric(df[mode], errors='coerce')
|
||||
color = "genus"
|
||||
color_discrete_sequence = None
|
||||
elif 'percent' in mode:
|
||||
color = "genus"
|
||||
color_discrete_sequence = None
|
||||
Returns:
|
||||
str: html string
|
||||
"""
|
||||
html = '<html><body>'
|
||||
if self is not None:
|
||||
html += plotly.offline.plot(self, output_type='div',
|
||||
include_plotlyjs='cdn') #, image = 'png', auto_open=True, image_filename='plot_image')
|
||||
else:
|
||||
color = "target"
|
||||
match get_unique_values_in_df_column(df, 'target'):
|
||||
case ['Target']:
|
||||
color_discrete_sequence = ["blue"]
|
||||
case ['Off-target']:
|
||||
color_discrete_sequence = ['red']
|
||||
case _:
|
||||
color_discrete_sequence = ['blue', 'red']
|
||||
bar = px.bar(df, x="submitted_date",
|
||||
y=mode,
|
||||
color=color,
|
||||
title=mode,
|
||||
barmode='stack',
|
||||
hover_data=["genus", "name", "target", mode],
|
||||
text="genera",
|
||||
color_discrete_sequence=color_discrete_sequence
|
||||
)
|
||||
bar.update_traces(visible=ii == 0)
|
||||
fig.add_traces(bar.data)
|
||||
return generic_figure_markers(fig=fig, modes=modes, ytitle=ytitle)
|
||||
|
||||
|
||||
def construct_html(figure: Figure) -> str:
|
||||
"""
|
||||
Creates final html code from plotly
|
||||
|
||||
Args:
|
||||
figure (Figure): input figure
|
||||
|
||||
Returns:
|
||||
str: html string
|
||||
"""
|
||||
html = '<html><body>'
|
||||
if figure is not None:
|
||||
html += plotly.offline.plot(figure, output_type='div',
|
||||
include_plotlyjs='cdn') #, image = 'png', auto_open=True, image_filename='plot_image')
|
||||
else:
|
||||
html += "<h1>No data was retrieved for the given parameters.</h1>"
|
||||
html += '</body></html>'
|
||||
return html
|
||||
html += "<h1>No data was retrieved for the given parameters.</h1>"
|
||||
html += '</body></html>'
|
||||
return html
|
||||
|
||||
Reference in New Issue
Block a user