controls working

This commit is contained in:
Landon Wark
2023-01-23 14:28:24 -06:00
parent d17ee5862d
commit 7a53cfd9a1
9 changed files with 625 additions and 159 deletions

View File

@@ -1,5 +1,8 @@
import pandas as pd
from pandas import DataFrame
import numpy as np
from backend.db import models
import json
def make_report_xlsx(records:list[dict]) -> DataFrame:
df = DataFrame.from_records(records)
@@ -10,4 +13,82 @@ def make_report_xlsx(records:list[dict]) -> DataFrame:
print(df2.columns)
# df2['Cost']['sum'] = df2['Cost']['sum'].apply('${:,.2f}'.format)
df2.iloc[:, (df2.columns.get_level_values(1)=='sum') & (df2.columns.get_level_values(0)=='Cost')] = df2.iloc[:, (df2.columns.get_level_values(1)=='sum') & (df2.columns.get_level_values(0)=='Cost')].applymap('${:,.2f}'.format)
return df2
return df2
# def split_controls_dictionary(ctx:dict, input_dict) -> list[dict]:
# # this will be the date in string form
# dict_name = list(input_dict.keys())[0]
# # the data associated with the date key
# sub_dict = input_dict[dict_name]
# # How many "count", "Percent", etc are in the dictionary
# data_size = get_dict_size(sub_dict)
# output = []
# for ii in range(data_size):
# new_dict = {}
# for genus in sub_dict:
# print(genus)
# sub_name = list(sub_dict[genus].keys())[ii]
# new_dict[genus] = sub_dict[genus][sub_name]
# output.append({"date":dict_name, "name": sub_name, "data": new_dict})
# return output
# def get_dict_size(input:dict):
# return max(len(input[item]) for item in input)
# def convert_all_controls(ctx:dict, data:list) -> dict:
# dfs = {}
# dict_list = [split_controls_dictionary(ctx, datum) for datum in data]
# dict_list = [item for sublist in dict_list for item in sublist]
# names = list(set([datum['name'] for datum in dict_list]))
# for name in names:
# # df = DataFrame()
# # entries = [{item['date']:item['data']} for item in dict_list if item['name']==name]
# # series_list = []
# # df = pd.json_normalize(entries)
# # for entry in entries:
# # col_name = list(entry.keys())[0]
# # col_dict = entry[col_name]
# # series = pd.Series(data=col_dict.values(), index=col_dict.keys(), name=col_name)
# # # df[col_name] = series.values
# # # print(df.index)
# # series_list.append(series)
# # df = DataFrame(series_list).T.fillna(0)
# # print(df)
# dfs['name'] = df
# return dfs
def convert_control_by_mode(ctx:dict, control:models.Control, mode:str):
output = []
data = json.loads(getattr(control, mode))
for genus in data:
_dict = {}
_dict['name'] = control.name
_dict['submitted_date'] = control.submitted_date
_dict['genus'] = genus
_dict['target'] = 'Target' if genus.strip("*") in control.controltype.targets else "Off-target"
for key in data[genus]:
_dict[key] = data[genus][key]
output.append(_dict)
# print(output)
return output
def convert_data_list_to_df(ctx:dict, input:list[dict], subtype:str|None=None) -> DataFrame:
df = DataFrame.from_records(input)
safe = ['name', 'submitted_date', 'genus', 'target']
print(df)
for column in df.columns:
if "percent" in column:
count_col = [item for item in df.columns if "count" in item][0]
# The actual percentage from kraken was off due to exclusion of NaN, recalculating.
df[column] = 100 * df[count_col] / df.groupby('submitted_date')[count_col].transform('sum')
if column not in safe:
if subtype != None and column != subtype:
del df[column]
# print(df)
return df